Intermolecular Interactions of Xe Atoms Confined in One-dimensional Nanochannels of Tris(o-phenylenedioxy)cyclotriphosphazene as Studied by High-pressure 129 Xe NMR

Hirokazu Kobayashi^a, Takahiro Ueda^{a,b}, Keisuke Miyakubo^a, and Taro Eguchi^{a,b}

^a Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

b The Museum of Osaka University, Osaka University, Toyonaka, Osaka 560-0043, Japan

Reprint requests to Prof. T. E.; E-mail to:eguchi@museum.osaka-u.ac.jp

Z. Naturforsch. **58a**, 727 – 734 (2003); received September 9, 2003

The pressure dependence of the 129 Xe chemical shift tensor confined in the Tris(o-phenylenedioxy) cyclotriphosphazene (TPP) nanochannel was investigated by high-pressure 129 Xe NMR spectroscopy. The observed 129 Xe spectrum in the one-dimensional TPP nanochannel (0.45 nm in diameter) exhibits a powder pattern broadened by an axially symmetric chemical shift tensor. As the pressure increases from 0.02 to 7.0 MPa, a deshielding of 90 ppm is observed for the perpendicular component of the chemical shift tensor δ_{\perp} , whereas a deshielding of about 30 ppm is observed for the parallel one, δ_{\parallel} . This suggests that the components of the chemical shift tensor, δ_{\parallel} and δ_{\perp} , are mainly dominated by the Xe-wall and Xe-Xe interaction, respectively. Furthermore, the effect of helium, which is present along with xenon gas, on the 129 Xe chemical shift is examined in detail. The average distance between the Xe atoms in the nanochannel is estimated to be 0.54 nm. This was found by using δ_{\perp} at the saturated pressure of xenon, and comparing the increment of the chemical shift value in δ_{\perp} to that of a β -phenol/Xe compound.

Key words: High-pressure ¹²⁹Xe NMR; TPP; One-dimensional Nanochannel; Pressure Dependence; ¹²⁹Xe Chemical Shift Tensor.